
thirdweb A-4
Security Audit

September 29th, 2022
Version 1.0.0

Presented by 0xMacro

Table of Contents

Introduction

Overall Assessment

Specification

Source Code

Issue Descriptions and Recommendations

Security Levels Reference

Review Notes on VoteERC20.sol and Split.sol

Disclaimer

Introduction

This document includes the results of the security audit for thirdweb's smart contract

code as found in the section titled ‘Source Code’. The security audit was performed by the

Macro security team from August 23, 2022 to September 2, 2022.

The purpose of this audit is to review the source code of certain thirdweb Solidity

contracts, and provide feedback on the design, architecture, and quality of the source

code with an emphasis on validating the correctness and security of the software in its

entirety.

Disclaimer: While Macro’s review is comprehensive and has surfaced some changes that

should be made to the source code, this audit should not solely be relied upon for

security, as no single audit is guaranteed to catch all possible bugs.

Overall Assessment

The following is an aggregation of issues found by the Macro Audit team:

Severity Count Acknowledged Won't Do Addressed

Critical 1 - - 1

Medium 3 - - 3

Low 2 - 1 1

Code Quality 4 - - 4

Informational 1 - - -

Gas Optimization 1 - - 1

thirdweb was quick to respond to these issues.

Specification

Our understanding of the specification was based on the following sources:

Discussions on Slack with the thirdweb team.

The official website, developer documentation and more specifically provided

documentation for contracts which were in scope of the performed audit:

SignatureMint.

Source Code

The following source code was reviewed during the audit:

Repository: contracts

Commit Hash: d3f61abc34d930788e09b968affb38fec5762408

Specifically, we audited the following contracts as part of TokenERC20 contract audit:

Contract SHA256

contracts/token/TokenERC20.sol b60f119b198c65147fdd0dfa1db2edacf50
18abc0a7600707773bef8a029ee57

contracts/lib/FeeType.sol 3d2ede585eb7e37872a0f3566a143f5b2aa
586873160966d34c98963015f622d

contracts/lib/CurrencyTransferLib.sol ab7e40d1b333d675e23d9d4a4c70836c508
b2e8b890cf1c6f3dc554424d1215d

contracts/openzeppelin-
presets/metatx/ERC2771ContextUpgradeable
.sol

4ef0ce1601048c10a4b0fdc3247062be8f1
a9ca0441c862ddfadc16251a31edb

contracts/extension/interface/IPlatformFee.s
ol

6765deea0f732abce9f6b450826da733d59
ad101b1bab9014a408a5098e54105

contracts/extension/interface/IPrimarySale.so
l

923135d5e6d6ea2452ccdecbe4794b48fbe
4389231caa78fba964a1d4ba4114f

contracts/interfaces/token/ITokenERC20.sol a6160110711cb0935a9b23d2d0429fa5423
7ec8bdf5ae7d19b328dd39c93ac45

contracts/interfaces/ITWFee.sol 4c57ef2e5572551ee29ec7ecfcb67932f15
2f7b0ffd1e5c84e0976f577eb43c5

contracts/interfaces/IThirdwebContract.sol 8fc9d29ddee99b052ccdc521c272ee4df8a
7de0e1754bfcba397dc5cdfa18c72

We audited the following contracts as part of TokenERC721 contract audit:

Contract SHA256

contracts/token/TokenERC721.sol 01266703a6d26dbc1e223115dd4476b87d9
adb8ab0ac9676718b6c8265a33eb3

contracts/lib/FeeType.sol 3d2ede585eb7e37872a0f3566a143f5b2aa
586873160966d34c98963015f622d

contracts/lib/CurrencyTransferLib.sol ab7e40d1b333d675e23d9d4a4c70836c508
b2e8b890cf1c6f3dc554424d1215d

contracts/openzeppelin-
presets/metatx/ERC2771ContextUpgradeable
.sol

4ef0ce1601048c10a4b0fdc3247062be8f1
a9ca0441c862ddfadc16251a31edb

contracts/extension/interface/IPlatformFee.s
ol

6765deea0f732abce9f6b450826da733d59
ad101b1bab9014a408a5098e54105

contracts/extension/interface/IPrimarySale.so
l

923135d5e6d6ea2452ccdecbe4794b48fbe
4389231caa78fba964a1d4ba4114f

contracts/extension/interface/IRoyalty.sol 8f39cbdfd7fff348f5f002c2ee87f607811
e02312a673781e1cd3281694a9568

contracts/extension/interface/IOwnable.sol f4e6814d6fa45c709cbd03de2a2fd46fb86
d3156cb934f6feb9acaa692deca72

contracts/interfaces/token/ITokenERC721.sol f472020a23d63126b70ddbd2db87d12bdcd
2a0765e8ab4e013344794b1fcc7f0

contracts/interfaces/ITWFee.sol 4c57ef2e5572551ee29ec7ecfcb67932f15
2f7b0ffd1e5c84e0976f577eb43c5

contracts/interfaces/IThirdwebContract.sol 8fc9d29ddee99b052ccdc521c272ee4df8a
7de0e1754bfcba397dc5cdfa18c72

We audited the following contracts as part of TokenERC1155 contract audit:

Contract SHA256

contracts/token/TokenERC1155.sol 68d480bcdc3b470ad4049addbc07e6e08e8
800a7449f4b198a8d7301dc1c1f23

contracts/lib/FeeType.sol 3d2ede585eb7e37872a0f3566a143f5b2aa
586873160966d34c98963015f622d

contracts/lib/CurrencyTransferLib.sol ab7e40d1b333d675e23d9d4a4c70836c508
b2e8b890cf1c6f3dc554424d1215d

contracts/openzeppelin-
presets/metatx/ERC2771ContextUpgradeable
.sol

4ef0ce1601048c10a4b0fdc3247062be8f1
a9ca0441c862ddfadc16251a31edb

contracts/extension/interface/IPlatformFee.s
ol

6765deea0f732abce9f6b450826da733d59
ad101b1bab9014a408a5098e54105

contracts/extension/interface/IPrimarySale.so
l

923135d5e6d6ea2452ccdecbe4794b48fbe
4389231caa78fba964a1d4ba4114f

contracts/extension/interface/IRoyalty.sol 8f39cbdfd7fff348f5f002c2ee87f607811
e02312a673781e1cd3281694a9568

contracts/extension/interface/IOwnable.sol f4e6814d6fa45c709cbd03de2a2fd46fb86
d3156cb934f6feb9acaa692deca72

contracts/interfaces/token/ITokenERC1155.so
l

fc20fdff4ab4db1ddf2849e4309c2e2239a
147fd0ef6fe49130494af902aa0d0

contracts/interfaces/ITWFee.sol 4c57ef2e5572551ee29ec7ecfcb67932f15
2f7b0ffd1e5c84e0976f577eb43c5

contracts/interfaces/IThirdwebContract.sol 8fc9d29ddee99b052ccdc521c272ee4df8a
7de0e1754bfcba397dc5cdfa18c72

Note: This document contains an audit solely of the Solidity contracts listed above.

Specifically, the audit pertains only to the contracts themselves, and does not pertain to

any other programs or scripts, including deployment scripts.

Issue Descriptions and Recommendations

Click on an issue to jump to it, or scroll down to see them all.

C-1 mintWithSignature() front-running vulnerability

M-1 TokenERC20 charges price when quantity is 0

M-2 Native tokens can get locked in the contract

M-3 Use _safeMint instead of _mint

L-1 platformFeeBps is not bounded

L-2 PrimarySaleRecipient and platformFeeRecipient can be set to 0x0

Q-1 Documentation discrepancy for price in TokenERC20.sol

Q-2 Inconsistency between Token contracts regarding pause/unpause functionality

Q-3 TokenERC721 can have empty URI

Q-4 Inconsistency among different contracts

G-1 Calldata parameters

I-1 draft-EIP712Upgradeable.sol draft status

Security Level Reference

We quantify issues in three parts:

1. The high/medium/low/spec-breaking impact of the issue:

How bad things can get (for a vulnerability)

The significance of an improvement (for a code quality issue)

The amount of gas saved (for a gas optimization)

2. The high/medium/low likelihood of the issue:

How likely is the issue to occur (for a vulnerability)

3. The overall critical/high/medium/low severity of the issue.

This third part – the severity level – is a summary of how much consideration the client

should give to fixing the issue. We assign severity according to the table of guidelines

below:

Severity Description

(C-x)
Critical

We recommend the client must fix the issue, no matter what,
because not fixing would mean significant funds/assets WILL
be lost.

(H-x)
High

We recommend the client must address the issue, no matter
what, because not fixing would be very bad, or some
funds/assets will be lost, or the code’s behavior is against the
provided spec.

(M-x)
Medium

We recommend the client to seriously consider fixing the
issue, as the implications of not fixing the issue are severe
enough to impact the project significantly, albiet not in an
existential manner.

(L-x)
Low

The risk is small, unlikely, or may not relevant to the project in
a meaningful way.

Whether or not the project wants to develop a fix is up to the
goals and needs of the project.

(Q-x)
Code Quality

The issue identified does not pose any obvious risk, but fixing
could improve overall code quality, on-chain composability,
developer ergonomics, or even certain aspects of protocol
design.

(I-x)
Informational

Warnings and things to keep in mind when operating the
protocol. No immediate action required.

(G-x)
Gas

Optimizations

The presented optimization suggestion would save an amount
of gas significant enough, in our opinion, to be worth the
development cost of implementing it.

Issue Details

C-1 mintWithSignature() front-running vulnerability

TOPIC

Frontrunning
STATUS

Fixed
IMPACT

High
LIKELIHOOD

High

In TokenERC20, TokenERC721 and TokenERC115, mintWithSignature() allows the

MintRequest’s to address to be zero:

This behavior allows a minter to construct a mint signature such that the sender will

receive the tokens, instead of needing to specify the recipient’s address.

However, because the recipient is the sender, an attacker can frontrun a

mintWithSignature() transaction, receiving the tokens and leaving the victim with

nothing.

If there is no price, the attacker gets the tokens for free. This is particularly bad when the

token has a market price on an AMM, and the contract owner wanted to grant someone

new tokens.

If a price is present, the attacker does have to pay it. But the situation is still problematic if

the price was a discount, or if the use case is minting for a fixed amount of investment.

Note that this behavior also exists in SignatureDrop.sol.

Consider forcing MintRequest’s to address to always be defined.

M-1 TokenERC20TokenERC20 charges price when quantity is 0

TOPIC

Incentive Design
STATUS

Fixed
IMPACT

High
LIKELIHOOD

Low

In TokenERC20’s mintWithSignature function, when mint request is defined with

quantity=0 , nothing is minted to the specified to address but:

The price is still charged

The mint request is recorded as a success (via the minted mapping).

Although an account with a minter role would need to create this mint request, it’s not

uncommon for such logic to have bugs, especially in an off-chain context.

Consider adding a check in the verifyRequest function to revert when quantity is 0.

require(_req.quantity > 0, "quantity is zero");

Also consider to add the above require statement to TokenERC1155. Although this contract

doesn’t charge the price as quantity is considered in calculation, it still records the mint

request as a success.

M-2 Native tokens can get locked in the contract

TOPIC

Use Cases
STATUS

Fixed
IMPACT

Medium
LIKELIHOOD

Low

In TokenERC20, TokenERC721 and TokenERC115 mint requests can include a price and a

currency which can be either NATIVE_TOKEN (e.g. ETH) or some other ERC20 token.

Suppose the currency specified in the request is some ERC20 token and the sender - by

mistake - nevertheless sends ether with the call. The function call will not revert, causing

the received “native tokens” to be locked inside the contract without recovery.

Consider adding a check to the collectPrice function which prevents ether being sent

to the contract when currency is not set to NATIVE_TOKEN .

if (_currency == CurrencyTransferLib.NATIVE_TOKEN) {
 require(msg.value == _price, "must send total price.");
} else {
 require(msg.value == 0, "dont accept ether");
}

M-3 Use _safeMint instead of _mint

TOPIC

Coding Standards
STATUS

Fixed
IMPACT

High
LIKELIHOOD

Medium

TokenERC721 and TokenERC1155 use _mint instead of _safeMint to mint the actual

tokens:

_mint(_to, tokenIdToMint);

This can lead to tokens being locked in those contracts with no recovery.

Consider using _safeMint instead of _mint to check if a contract recipient can receive

(or is at least aware of receiving) ERC721 tokens.

L-1 platformFeeBps is not bounded

TOPIC

Input Ranges
STATUS

Fixed
IMPACT

Low
LIKELIHOOD

Low

In TokenERC20, TokenERC721 and TokenERC115, the initialize functions don’t have a

boundary check for platformFeeBps .

Also in the setPlatformFeeInfo function, the only restriction to platformFeeBps is ≤
MAX_BPS (10_000). If set to MAX_BPS or any value close to it (depending on fees), the

minting would fail because of underflow in case ThirdWeb fee is applied. See following

line:

CurrencyTransferLib.transferCurrency(
 _currency,
 _msgSender(),
 _primarySaleRecipient,
 _price - platformFees - twFee // underflow
);

Consider setting a reasonable upper limit for platformFeeBps .

L-2 PrimarySaleRecipient and platformFeeRecipient can be set to 0x0

TOPIC

Input Ranges
STATUS

Wont Do
IMPACT

High
LIKELIHOOD

Low

In the initialize() , setPrimarySaleRecipient() , and setPlatformFeeInfo() , in all

three token contracts, there is no check for primarySaleRecipient and

platformFeeRecipient to not have address 0x0.

As a consequence, when using NATIVE_TOKEN (e.g. ETH), ether could be burned to the

zero address.

In the case of an ERC20 transfer, the transaction would be reverted (for OpenZeppelin

ERC20 tokens).

Consider adding checks to not allow address 0x0 for primarySaleRecipient and

platformFeeRecipient .

Q-1 Documentation discrepancy for price in TokenERC20.solTokenERC20.sol

TOPIC

Code Quality
STATUS

Addressed
QUALITY IMPACT

Medium

Thirdweb’s signatureMint documentation defines one of the mint request parameters as

pricePerToken .

However, in TokenERC20.sol, the price specified in the mint request is considered the total

price instead.

This also creates an inconsistency with TokenERC1155.sol, which uses pricePerToken as

documented.

Consider:

1. Updating TokenERC20 to use pricePerToken instead of total price and adapting

collectPrice function accordingly to include a quantity parameter, or

2. Document the differing behavior of TokenERC20

Q-2 Inconsistency between Token contracts regarding pause/unpause
functionality

TOPIC

Code Quality
STATUS

Fixed
QUALITY IMPACT

Medium

In TokenERC20 there is the possibility to pause/unpause token transfers. In contrast,

TokenERC721 and TokenERC1155 don’t provide this functionality.

Consider to add pause/unpause capability for token transfers in TokenERC721 and

TokenERC1155.

Q-3 TokenERC721TokenERC721 can have empty URI

TOPIC

Code Quality
STATUS

Fixed
QUALITY IMPACT

Medium

In TokenERC1155's _mintTo function the minting reverts when the uri parameter

in MintRequest is empty.

if (bytes(_tokenURI[_tokenId]).length == 0) {
 require(bytes(_uri).length > 0, "empty uri.");
 _tokenURI[_tokenId] = _uri;
}

In contrast, TokenERC721 doesn’t check for empty uri parameter.

Consider adding this check to TokenERC721 as well.

Q-4 Inconsistency among different contracts

TOPIC

Code Quality
STATUS

Fixed
QUALITY IMPACT

Low

TokenERC721 and TokenERC1155 define their own NATIVE_TOKEN constant:

address private constant

NATIVE_TOKEN = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;

However, TokenERC20 uses CurrencyTransferLib.NATIVE_TOKEN .

The collectPrice() function is written differently in TokenERC20 from TokenERC721

and TokenERC1155. Instead of passing in a reference to the whole _req request, it

pulls out specific parameters. In addition, TokenERC20’s version has the logic to

determine saleRecipient within mintWithSignature() instead of collectPrice() .

Consider updating TokenERC20’s collectPrice() to be consistent with TokenERC721

function mintWithSignature(MintRequest calldata _req, bytes calldata _signature) external payable nonReentrant {
 // ...
 address receiver = _req.to == address(0) ? _msgSender() : _req.to;
 // ...
}

https://0xmacro.com/
https://github.com/thirdweb-dev/contracts/commit/19a10e308cb90644caa45a880db7dd29d96321bf
https://github.com/thirdweb-dev/contracts/commit/eef735c335326be9b0218167b22de4cc580e4fd5
https://github.com/thirdweb-dev/contracts/commit/51d5ab7b26937dc165c6442f945d92bebfd9308a
https://github.com/thirdweb-dev/contracts/commit/78c7d917b913930b525e2a3ec068f1597ce81a2f
https://github.com/thirdweb-dev/contracts/commit/75982879674aa6911188463fa5b5fb3c2100e204
https://github.com/thirdweb-dev/contracts/commit/285009b1a89150803e3512ae8a2c36f7ef818358
https://github.com/thirdweb-dev/contracts/commit/280668cce00be3671b43e3472970cd1b739cbe28
https://github.com/thirdweb-dev/contracts/commit/c49c0e595516720ba878cf5b6bbf3e03a4031b69
https://github.com/thirdweb-dev/contracts/commit/60541f48ca23fc80a519fe4cec9a34aa11cb8cf2
https://thirdweb.com/
https://portal.thirdweb.com/
https://github.com/thirdweb-dev/contracts/blob/v3.1.1/contracts/token/signatureMint.md
https://github.com/thirdweb-dev/contracts
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol#L231-L232
https://github.com/thirdweb-dev/contracts/blob/v3.1.1/contracts/token/signatureMint.md#payload--mint-request
https://0xmacro.com/

and TokenERC1155.

_afterTokenTransfer() is only overridden in TokenERC20 without any changed

behavior.

MAX_BPS is declared as:

uint128 internal constant in TokenERC20.

uint256 private constant in TokenERC721 and in TokenERC1155.

platformFeeBps is declared as:

uint128 internal in TokenERC20.

uint128 public in TokenERC721 and in TokenERC1155.

TokenERC721 and TokenERC1155 both inherit from OpenZeppelin’s

ReentrancyGuardUpgradeable and call its __ReentrancyGuard_init() . However,

TokenERC20 does call this initializer, even though it inherits the same contract.

G-1 Calldata parameters

TOPIC

Gas Optimization
STATUS

Fixed
GAS SAVINGS

Low

In TokenERC721 and TokenERC1155 function collectPrice uses memory keyword for the

MintRequest parameter. Consider using calldata allocation instead to save gas costs.

In TokenERC721 and TokenERC1155 function collectPrice uses memory keyword for the

MintRequest parameter. Consider using calldata allocation instead to save on gas cost.

I-1 draft-EIP712Upgradeable.sol draft status

TOPIC

Informational
IMPACT

Informational ✳

See OZ’s statement regarding draft status here:

https://docs.openzeppelin.com/contracts/3.x/api/drafts

Review Notes on VoteERC20.sol and Split.sol

Scope: VoteERC20.sol and Split.sol

For these two contracts, we opted to do a review instead of a full audit, due there being

no test suite and low documentation. However, we were happy to provide suggestions

and considerations in this way.

VoteERC20.sol

(1) Both proposalIndex and proposalId are used

Resolution: Wont Do.

The two common options to store proposals on-chain in DAO proposal systems are:

1. Store all function calls and arguments on-chain.

2. Store a 32 byte hash of all function calls on-chain, and post the source of that hash

off-chain (e.g. on a public forum).

The former leans more towards decentralization, as anyone can read on-chain data to

verify the proposed function calls at any time.

On the other hand, the latter saves on gas costs, as storing function calls on-chain can get

expensive.

VoteERC20 takes the approach of both:

1. It uses Open Zeppelin’s GovernorUpgradeable contract, which uses approach #2.

2. It extends propose() to store all calls in its own proposals variable (approach #1),

including the 32 byte hash from the parent OZ contract.

Doing both is redundant, which will result in increased gas costs for no benefit. It may also

cause confusion, as there are arguably two ids: the 32 byte hash, and the proposal index.

Consider taking one approach or another. If approach #1 is desired, consider using

Compound’s Governor Bravo contracts. Otherwise, it may be sufficient that the proposed

function calls are emitted in an event.

Split.sol

(1) DoS vulnerability in distribute function

Resolution: Wont Do.

In Split contract, distribute function loops through each payee address and sends

assets performing checks and reverting if any of these calls fails. If one of the payees

reverts the transfer the entire distribute function will revert in every call. This can also

be intentionally done by a smart contract address as a payee.

The vulnerability is not that bad, since anyone is able to call release() for their own

account at any time. However, consider documenting the dangers 3rd party contracts or

other thirdweb contracts relying on this function.

Also consider not reverting on failed transfers, if atomicity is not important.

(2) OpenZeppelin’s version of PaymentSplitterUpgradeable.sol has been

updated

Resolution: Updated preset version to reflect OZ changes.

Split contract inherits from PaymentSplitterUpgradeable . It is not referencing the

OpenZeppelin version directly but instead is using a preset version:

import "./openzeppelin-presets/finance/PaymentSplitterUpgradeable.sol";

OpenZeppelin did some slight changes recently on this contract and has added

releasable functions. See here: https://github.com/OpenZeppelin/openzeppelin-

contracts-upgradeable/commit/b392c249e2c72434c438e0e495af1bacbc6cfd4f#diff-

ec6a964c766447336ea6842ff3214ac85da5144ccf44d92e100d3d4acfd907c4

Consider to update the preset version to include those latest changes, as releasable()

is a useful function.

(3) Inconsistent zero check

Resolution: The ThirdWeb fee was removed.

After calling thirdwebFee.getFeeInfo() , the Split contract checks to see if their values

are not equal to zero. This seems to be inconsistent with the rest of the codebase.

If this check is important, consider reevaluating other parts of the codebase that do not

have this check.

(4) Inaccurate comments

Resolution: Removed related comments.

On distribute function, Split contract has comments referring to an function named

_appPay but it does not seem to exist in the codebase.

Disclaimer

Macro makes no warranties, either express, implied, statutory, or otherwise, with respect

to the services or deliverables provided in this report, and Macro specifically disclaims all

implied warranties of merchantability, fitness for a particular purpose, noninfringement

and those arising from a course of dealing, usage or trade with respect thereto, and all

such warranties are hereby excluded to the fullest extent permitted by law.

Macro will not be liable for any lost profits, business, contracts, revenue, goodwill,

production, anticipated savings, loss of data, or costs of procurement of substitute goods

or services or for any claim or demand by any other party. In no event will Macro be liable

for consequential, incidental, special, indirect, or exemplary damages arising out of this

agreement or any work statement, however caused and (to the fullest extent permitted by

law) under any theory of liability (including negligence), even if Macro has been advised of

the possibility of such damages.

The scope of this report and review is limited to a review of only the code presented by

the Emergent team and only the source code Macro notes as being within the scope of

Macro’s review within this report. This report does not include an audit of the deployment

scripts used to deploy the Solidity contracts in the repository corresponding to this audit.

Specifically, for the avoidance of doubt, this report does not constitute investment advice,

is not intended to be relied upon as investment advice, is not an endorsement of this

project or team, and it is not a guarantee as to the absolute security of the project. In this

report you may through hypertext or other computer links, gain access to websites

operated by persons other than Macro. Such hyperlinks are provided for your reference

and convenience only, and are the exclusive responsibility of such websites’ owners. You

agree that Macro is not responsible for the content or operation of such websites, and

that Macro shall have no liability to your or any other person or entity for the use of third

party websites. Macro assumes no responsibility for the use of third party software and

shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

function distribute() public virtual {
 uint256 count = payeeCount();
 for (uint256 i = 0; i < count; i++) {
 ****// note: `_release` should not fail because payee always has shares, **protected by `_appPay`**
 _release(payable(payee(i)));
 }
}

function distribute(IERC20Upgradeable token) public virtual {
 uint256 count = payeeCount();
 for (uint256 i = 0; i < count; i++) {
 ****// note: `_release` should not fail because payee always has shares, **protected by `_appPay**`
 _release(token, payee(i));
 }
}

https://github.com/thirdweb-dev/contracts/commit/639a4c91521ec1b182d4aca232cc7410216efc0e
https://docs.openzeppelin.com/contracts/3.x/api/drafts
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/governance/GovernorUpgradeable.sol#L262
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/governance/GovernorUpgradeable.sol#L277-L287
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/commit/b392c249e2c72434c438e0e495af1bacbc6cfd4f#diff-ec6a964c766447336ea6842ff3214ac85da5144ccf44d92e100d3d4acfd907c4

